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Regular physical exercise provides many health benefits, protecting against the

development of chronic diseases, and improving quality of life. Some of the

mechanisms by which exercise provides these effects are the promotion of an

anti-inflammatory state, reinforcement of the neuromuscular function, and activation

of the hypothalamic–pituitary–adrenal (HPA) axis. Recently, it has been proposed that

physical exercise is able tomodify gut microbiota, and thus this could be another factor by

which exercise promotes well-being, since gut microbiota appears to be closely related

to health and disease. The purpose of this paper is to review the recent findings on gut

microbiota modification by exercise, proposing several mechanisms by which physical

exercise might cause changes in gut microbiota.
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INTRODUCTION

A sedentary lifestyle is associated with a high incidence of chronic diseases such as cardiovascular
diseases, type 2 diabetes, cancer, and metabolic syndrome (Owen et al., 2010). Physical exercise
is a powerful preventive and treatment tool in several diseases, inducing metabolic and immune
effects that provide health benefits. In fact, exercise prescription is effective in preventing ischemic
heart disease, stroke, hypertension, colon and breast cancer, type 2 diabetes, metabolic syndrome,
osteoporosis, sarcopenia, functional dependence and falls in the elderly, cognitive impairment,
anxiety, and depression (Bayego et al., 2012). There are several mechanisms involved in the
health-promoting effects of physical exercise, such as the promotion of an anti-inflammatory state,
activation of the hypothalamic–pituitary–adrenal (HPA) axis, and reinforcement of neuromuscular
function (Gonzalez-Freire et al., 2014; Silverman and Deuster, 2014). When a muscle is contracted
with a certain intensity it works as an endocrine organ that releases cytokines (IL-6, IL-8, IL-15) and
activates the PPARÈ coactivator 1 (PGC-1α), which in turn increases mitochondrial biosynthesis
and fatty acid utilization (Bishop-Bailey, 2013). Muscle contraction also activates the Forkhead box
class O family members FoxO1 and FoxO3 that regulate energy metabolism and govern protein
breakdown and muscle mass (Sanchez et al., 2014). In recent years, a new factor by which exercise
may promote beneficial health effects has emerged: the modification of gut microbiota. The impact
of physical exercise on gut microbiota has barely been revealed. In this review, we outline the
potential mechanisms by which exercise could impact gut microbiota.
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GUT MICROBIOTA

The gut microbiota is a set of microorganisms that live
throughout the gastrointestinal tract of mammals, and which
increase in number and diversity from the stomach to the colon.
It has been estimated that human microbiota consists of 1014

cells (10 times the total number of cells in the human body).
In fact, in recent years some authors have defined the human
body as a symbiotic super-organism made up of eukaryotic and
prokaryotic cells (Eberl, 2010). Microbiota could be composed
of 500–1000 different species, the composition of this microbial
community is host-specific, evolves throughout the life of the
individual, and it may be changed by both exogenous and
endogenous stimuli. Gut microbiota composition begins to
take shape at birth and continues to do so during lactation.
Babies born vaginally have a more diverse microbiota, in
which Lactobacillus, Prevotella, or Sneathia species predominate,
while babies born by Cesarean have a less diverse microbiota
in terms of genera, with a predominance of Staphylococcus,
Corynebacterium, and Propionibacterium (Dominguez-Bello
et al., 2010). In childhood, microbiota adopts the composition
of adulthood (Sobhani et al., 2011; Spor et al., 2011) in which
only 7–9 phyla of the total phyla that make up the Bacteria
domain are represented. In adulthood microbiota, 90% of the
phylotypes belong to Firmicutes (60–80%) and Bacteroidetes (15–
30%) phyla (Ley et al., 2006a; Ringel-Kulka et al., 2011), whereas
the other minority group of bacteria belongs to Proteobacteria,
Actinobacteria, Fusobacteria, and Verrucomicrobia phyla (Robles
Alonso and Guarner, 2013).

GUT MICROBIOTA AND HEALTH

The relation between gut microbiota and health is increasingly
evident. Gut microbiota is crucial for the development of the
immune system, in fact, animals raised under absolute sterile
conditions (without colonizing microbiota) have a deficient
intestinal immune system (Round and Mazmanian, 2009).
The bidirectional interaction between microbiota and the host
immune system begins at birth and both evolve throughout the
life of the host. The intestinal immune system is continuously
in contact with gut microbiota and must discriminate between
beneficial and harmful bacteria. The immune system through
pattern-recognition receptors [like Toll-like receptors (TLRs)]
recognizes microbial-associated molecular patterns (MAMPs)
expressed in bacteria and depending on the type of bacteria,
tolerance is established or an immune response is triggered.
Paneth cells and B cells produce anti-microbial peptides
and immunoglobulin A respectively, that shape commensal
microbiota (Lei et al., 2015). On the other hand, gut microbiota
preserves the mucosal barrier integrity by inhibiting the adhesion
and growth of enteropathogens, and some types of bacteria have
been specifically implicated in mucosal tolerance via induction of
immune system T regulatory cells (Thompson-Chagoyán et al.,
2007; Brown et al., 2013). The balance between the immune
system and commensal microbiota is essential for maintaining
health, and the breaking of this equilibrium can trigger many
diseases, not only related to the gastrointestinal system, such

as ulcerative colitis, Crohn’s disease, and colon and gastric
cancer (Tamboli et al., 2004; Sobhani et al., 2011; Amirian
et al., 2013), but also other diseases such as metabolic syndrome
(Delzenne et al., 2011), diabetes type I and type II (Giongo
et al., 2011), allergic diseases (atopic eczema/dermatitis and
asthma) are associated with a low diversity of gut microbiota and
food allergy in infants could be related to a specific microbiota
profile (Arrieta and Finlay, 2014; Inoue and Shimojo, 2015),
rheumatoid arthritis (Vaahtovuo et al., 2008) and autism (Song
et al., 2004; Parracho et al., 2005). The presence of certain
bacterial strains of the Lactobacillus and Bifidobacterium genera
in our gut microbiota enhances the absorption of minerals
and vitamins, improves lactose intolerance, has anti-diabetic
effects, lowers cholesterol levels, increases resistance to pathogen
infection, decreases the incidence of colon cancer (Zhu et al.,
2011; Kumar et al., 2012), and exerts anti-inflammatory effects
at local and systemic levels, improving the development of a
controlled and protective immune system (Villena and Kitazawa,
2014). In addition to these functions, the metabolic capacity
of gut microbiota is such that it has been called the forgotten
organ (O’Hara and Shanahan, 2006), because its metabolism
is comparable to that of the liver (Gill et al., 2006). The
different communities of bacteria that make up gut microbiota
have a variety of metabolic enzymes and other biochemical
pathways different from those of the host, which allow them,
for example, to synthesize vitamins (K, biotin, folic acid) or
ferment indigestible fiber (Legrand et al., 2010; Ou et al.,
2012). In recent years, changes in microbiota composition
have been associated with obesity (Ley et al., 2006a). Obese
individuals have different microbiota composition than their
counterparts, Bacteroidetes phylum is less represented whereas
the proportion Firmicutes phylum is increased (Ley et al., 2005,
2006b). Moreover, microbiota transplant from obese mice to lean
mice produce obesity in the recipients independently of the food
intake (Turnbaugh et al., 2008). A change in microbiota profile
toward a population of bacteria that effectively extract more non-
assimilable nutrients from the diet, such as plant polysaccharides,
could add 10–15% more calories to the energy requirements of
the hosts and may therefore influence their obesity (Turnbaugh
et al., 2006; Quigley, 2013). Furthermore, microbiota is able to
influence hepatic triglyceride production, lipid metabolism (by
modulating the pattern of bile acids), carbohydrate metabolism,
and systemic low-grade inflammation associated with obesity,
insulin resistance, and metabolic syndrome (Backhed et al., 2004;
Quigley, 2013). Regarding proteins, some studies indicate that
excessive protein fermentation in the colon by harmful bacteria
may play a role in colon cancer (Corpet et al., 1995; Toden et al.,
2005).

Aspects Influencing Gut Microbiota
Gut microbiota is influenced by several factors, including host
genetics, age (Dicksved et al., 2008; O’Toole, 2012), pregnancy
(Koren et al., 2012), and some environmental factors such as
diet (De Filippo et al., 2010; David et al., 2014), the type
of birth (Salminen et al., 2004), stress, and antibiotic intake
(Nicholson et al., 2012) (Figure 1). Notwithstanding the fact that
several factors influence microbiota, it seems that microbiota
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composition remains relatively constant throughout our lives,
although in old age species diversity seems to be lower (Koenig
et al., 2011; Yatsunenko et al., 2012). When microbiota is studied
at levels below the phylum, a greater variation of microbiota
between individuals is observed, and although it is known that
microbiota of healthy individuals provides them a number of
health benefits, it is not clear what would be the ideal composition
of the “healthy microbiota.” It is suspected that the presence
of certain species as Faecalibacterium prausnitzii, Roseburia
uniformis, and Bacteroides intestinalis is “key” in shaping a
“healthymicrobiota” (Qin et al., 2012; Guinane and Cotter, 2013).
At present it is not known whether there are other factors that
influence microbiota composition, and the scientific community
is working hard trying to find which are the predominant factors
that modify microbiota; the interrelations between microbiota
composition; its pool of bacterial genes (microbiome) and their
expressing functions; and the physiological phenotype or disease
of the host (Lozupone et al., 2013).

PHYSICAL EXERCISE AND GUT
MICROBIOTA

Physical exercise performed at the doses recommended by the
World Health Organization (WHO) results in improved fitness,
enhancing the quality of life. Exercise is intended as a useful
tool to prevent disease and improve the prognosis. Diseases in
which exercise promotes a beneficial effect include prostate and
ovarian cancer (Cannioto and Moysich, 2015; Wekesa et al.,
2015), cardiovascular diseases (Schuler et al., 2013), diabetes
(Asano et al., 2014), and stress-related disorders such as anxiety
and depression (Silverman and Deuster, 2014). The mechanisms
by which exercise has a beneficial effect on health are numerous:
effects on the HPA axis, promotion of an anti-inflammatory
state, and neuroplasticity augmentation (Silverman and Deuster,
2014). One element that could be positively modified by physical
exercise and through which it could promote well-being is the gut
microbiota. Although several years ago Bäckhed et al. suggested
that there could be a muscle-microbiota axis (Backhed et al.,
2007), there are very few studies in the literature that have
addressed the modification of gut microbiota by exercise, and
all but one have been carried out in murine models. In a recent
study, Choi et al. showed changes in the composition of the
microbiota in mice which performed exercise vs. sedentary mice.
A total of 2510 taxa of bacteria showed differences between the
exercise group and the sedentary group. Mice that performed
physical exercise showed more abundance of the Lactobacillales
order, presenting up to 24 times more Enterococcus faecium
bacteria than sedentary mice, and a marked decrease (-361
fold) of C11_K211 bacteria of the Tenericutes phylum (Choi
et al., 2013) (Table 1). These results agree with those of Queipo-
Ortuño et al. indicating that exercised rats showed an increase in
Lactobacillus and Blautia coccoides–Eubacterium rectale groups
(Queipo-Ortuño et al., 2013). Furthermore, in a study carried
out with diverse rat strains, an increase in bacterial diversity in
exercised rats was described, and more specifically an increase
in Lactobacillus genus in obese rats subjected to physical

exercise (Petriz et al., 2014). Interestingly, a significantly high
inverse correlation between blood lactate concentrations and
Clostridiaceae and Bacteroidaeae families and the Ruminococcus
genus was found, whereas the Oscillospira genus was positively
correlated with lactate levels (Petriz et al., 2014). However, the
sample size of each experimental group in this study (n = 3)
compromised the reliability of these results, and thus further
studies are needed to confirm them. Surprising data were found
when microbiota of mice on a high-fat diet (with and without
exercise) and on normal-diet (with and without exercise) were
compared (Kang et al., 2014). Exercise not only counteracted
the microbiota changes induced by the high-fat diet but caused
large shifts in Firmicutes, Bacteroidetes, and Tenericutes phyla
in the same direction and order of magnitude as those caused
by the high-fat diet (Kang et al., 2014). Similarly, an additive
effect on increasing microbial diversity between a diet high
in fat and voluntary exercise was observed in mice (Evans
et al., 2014). In this study, exercise increased the percentage
of Bacteroidetes and decreased Firmicutes phyla regardless of
diet; moreover, the ratio of Bacteroidetes:Firmicutes correlated
inversely with the amount of performed exercise (Evans et al.,
2014). When exercise was applied to healthy and diabetic mice,
changes in Bacteroides/Prevotella spp., Methanobrevibacter spp.,
and Clostridium cluster I were observed for both groups, whereas
an increase in Bifidobacterium spp. level was only observed
in exercised non-diabetic mice, indicating that the presence of
diabetes nullified this effect (Lambert et al., 2015) (Table 1).
These data may indicate that changes induced by exercise are
influenced by the metabolic state of the individuals, and this
factor must be taken into account in further studies. From
a different approach, Hsu et al. observed that mice lacking
microbiota, those monocolonized with Bacteroides fragilis, and
normally raised mice had different exercise performance on
a strenuous exercise, and the observed effect seemed to be
mediated by the impact of the resident microbiota on the
antioxidant status (Hsu et al., 2015). In the unique human
study carried out up to now comparing athletes (rugby players)
vs. healthy controls, Clarke et al. observed that the athletic
group had a greater diversity of microbial species—22 phyla,
68 families, and 113 genera—in contrast with the 11 phyla,
33 families, and 65 genera of the control group (Clarke et al.,
2014). However, notwithstanding the differences in the athletes’
diets with respect to that of the controls, a unique effect of
exercise on gut microbiota diversity could not be determined,
taking into account the considerable impact of diet on gut
microbiota (Clarke et al., 2014; Flint et al., 2015; O’Sullivan et al.,
2015).

POTENTIAL MECHANISM BY WHICH
EXERCISE INFLUENCES GUT
MICROBIOTA

In a study conducted by Bäckhed et al. it was observed
that animals lacking microbiota were resistant to diet-induced
obesity. In the search for mechanisms that could explain
this effect, the authors noted that there were two metabolic
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FIGURE 1 | Factors influencing gut microbiota.

pathways through which muscle and microbiota were linked.
On the one hand, levels of the 5′ adenosine monophosphate-
activated protein kinase (p-AMPK), an enzyme involved in
energy homeostasis and activation of fatty acid oxidation and
glucose uptake in muscle, were 40% higher in the muscle of
germ-free rats compared than that of control rats; thus, the
presence of microbiota suppressed fatty acid oxidation and
glucose uptake in skeletal muscle (Backhed et al., 2007). On
the other hand, the lack of microbiota also caused an increase
in the expression of fasting-induced adipose factor (FIAF) in
the intestine. This FIAF is an inhibitor of the lipoprotein lipase
peroxisomal proliferator that may be involved in regulating the
expression of genes encoding key enzymes implicated in fatty
acid oxidation in muscle, in an AMPK-independent mechanism.
Moreover, locomotor activity of the germ-free animals was higher
than their counterparts. Although the cause of this increased
locomotor activity is unknown, it may indicate a relation between
the metabolic activity of the microbiota and behaviors that
may contribute to the observed differences in adiposity between
animals without microbiota and conventional animals (Backhed
et al., 2004). Currently, the mechanisms by which exercise may
cause changes in microbiota are not fully understood. Probably
a compendium of factors and pathways are involved in the
observed changes. In this review, we attempt to enumerate them
(Figure 2).

Bile Acids
One of the factors by which exercise may cause changes in gut
microbiota is the modification of the bile acids profile. Several
studies have found an inverse relation between the amount of
fecal bile acids and physical activity, and this relation becomes
stronger as physical activity intensifies (Hagio et al., 1985;
Sutherland et al., 1991; Wertheim et al., 2009). In general, bile
acids have an antimicrobial effect, but not all to the same extent,
so depending on the bile acids profile and their concentration
they may exert selective pressure on certain bacterial groups,
favoring the presence of some and reducing the presence of other
bacterial groups. In fact, in rats whose diets were supplemented
with cholic acid, a great change in microbiota profile was
observed in both diversity and composition, resulting in an
increase of the Firmicutes phylum (mainly Clostridia class)
and decrease of the Bacteroidetes phylum (Islam et al., 2011).
Furthermore, microbiota is capable of synthesizing the so-called
secondary bile acids that can bind receptors in the liver and
muscle. Bile acids, in addition to their function related to the
absorption of lipids and cholesterol metabolism, can work as
metabolic function integrators, activating hormone receptors
such as farnesoid X receptor (FXR), that protects against body
weight gain and liver and muscle fat deposition (Wang et al.,
1999; Claudel et al., 2005; Cipriani et al., 2010). Watanabe
et al. found that the addition of cholic acid to the diet of mice
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TABLE 1 | Physical exercise effects on gut microbiota profiles.

Model Exercise Method used to perform

metagenomics analysis of gut

microbiota

Modified bacterial groups References

Male C57BL/6 mice Voluntary running wheel 5 w PhyloChip Array ↓Tenericutes Koenig et al.,

2011↓Bacteroidetes

↓Firmicutes

↑Lactobacillales

Male Sprague Dawley rats Voluntary running wheel 6 d V2–V3 regions 16S rRNA

PCR-DGGE

qPCR

↑Diversity Yatsunenko

et al., 2012↑Actinobacteria

↑Bifidobacterium

↓Bacteroides

↓Prevotella

↓Firmicutes

↑B. coccoides- E. rectale

group

↓Enteroccocus

↑Lactobacillus

Obese (Zucker), hypertensive

(SHR) and Wistar rats

Treadmill 30min/d 5 times/w

for 4 w

V5-V6 regions 16 rRNA, 454 GS FLX

Titanium sequencer platform

↑Firmicutes Guinane and

Cotter, 2013↓Proteobacteria

↑Lactobacillus

↑Allobaculum

↓Streptococcus

↓Sutterella

↓Aggregatibacter

Male C57BL/6 J mice Running wheel 5 d/w for 24 w V3–V5 regions 16S rRNA, Miseq

Illumina platform

↑Firmicutes Qin et al.,

2012↓Tenericutes

↓Bacteroidetes

Male C57BL/6 mice Running wheel 7d/w for 12 w V4 region of the 16S rRNA, Miseq

Illumina platform

qPCR

T-RFLP

↑Bacteroidetes

↑Proteobacteria

↓Actinobacteria

↓Firmicutes

Lozupone

et al., 2013

Male db/db and db/+ mice Low-intensity treadmill running

5d/w during 6w

qPCR ↑Bifidobacterium Wekesa et al.,

2015↑C. leptum CIV

↑Clostridium cluster I

Male rugby players vs. healthy

male controls

Observational study V4 region 16S rRNA 454 Genome

Sequencer FLX platform

↑Diversity Schuler et al.,

2013↓Bacteroidetes

↓Bacteroides

↓Lactobacillaceae/

Lactobacillus

↑Akkermansiaceae/Akkermansia

d, days; w, weeks; ↑, increase; ↓, decrease.

fed with a high-fat diet caused an increase in the expression
of genes related to energy expenditure, mainly those related
to cyclic-AMP-dependent thyroid hormone-activating enzyme
type 2 iodothyronine deiodinase (D2) in brown adipose tissue
(Watanabe et al., 2006) (Figure 2). Although brown adipose
tissue is not found significantly in humans, D2 is significantly
expressed in skeletal muscle, and so ultimately it could be
hypothesized that bile acids may increase energy expenditure in
muscle.

Short-Chain Fatty Acids
Another fact that supports the existence of a muscle-microbiota
axis is the change that exercise produces in the fecal short-
chain fatty acids (SCFAs) profile. In animal models, it has
been observed that running exercise increases fecal butyrate
levels, and this change is associated with changes in butyrate-
producer bacteria groups (Matsumoto et al., 2008). Therefore,
increased SCFAs production through microbiota profile changes
could be one of the mechanisms by which physical exercise
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FIGURE 2 | Gut microbiota-exercise interaction mechanisms.

promotes health, since SCFA butyrate has the ability to inhibit
histone deacetylases, and subsequently it has an impact on
gene regulation, immune modulation, cancer suppression, cell
differentiation, intestinal barrier regulation, oxidative stress
reduction, diarrhea control, visceral sensitivity, and intestinal
motility modulation (Leonel and Alvarez-Leite, 2012).

On the other hand, the SCFAs produced by the microbiota
are capable of activating AMPK in the muscle (Yamashita et al.,
2007, 2009) (Figure 2). AMPK controls the activity of various
factors implicated in the regulation of cholesterol levels and in
the metabolism of lipids and glucose in the muscle (den Besten
et al., 2013; Kasubuchi et al., 2015). The activation of AMPK
in the muscle by the SCFAs can occur directly by augmenting
the AMP/ATP ratio and/or indirectly through the Ffar2-leptin
pathway, but the extent to which AMPK activation is regulated
for each pathway in vivo is still unknown (den Besten et al., 2013).
Moreover, SCFAs through Ffar2/3 receptors in the colon increase
plasma PYY (a satiety hormone) that reinforces the action of
insulin on glucose disposal in muscle and adipose tissue (den
Besten et al., 2013).

Toll-Like Receptors—Lipopolysaccharide
The activation of the TLRs in the muscle by lipopolysaccharide
(LPS) from the membrane of bacteria is another route by which
the muscle and the microbiota may be in communication.
The muscles express TLR4 and TLR5 receptors that could be
activated by circulating LPS (LPS9 or flagellin respectively) and

whose levels depend on gut microbiota composition (Bindels
and Delzenne, 2013). The stimulation of TLRs by LPS from the
membrane of certain bacterial types triggers the production of
inflammatory cytokines in the muscle through the activation
of the nuclear factor kappa-light-chain-enhancer of activated
B cells (NF-kB) (McFarlin et al., 2004; Stewart et al., 2005).
In fact, the injection of LPS in mice caused muscle atrophy
through TLR4 receptors (Doyle et al., 2011). Acute and chronic
physical exercise in rats on a high-fat diet induced an important
suppression in the TLR4 signaling pathway in the liver, muscle,
and adipose tissue, reducing LPS serum levels and improved
insulin signaling and sensitivity (Oliveira et al., 2011). Moreover,
exercise prevented lung injury and associated oxidative stress
provoked by instillation of LPS (Reis Goncalves et al., 2012;
da Cunha et al., 2013, 2014) and LPS-induced depressive-like
behavior in rats (Martin et al., 2014).

Ig-A-Mediated Mucosal Immunity
An increase of immunoglobulin A (IgA) production and a
reduced number of B and CD4 + T cells have been observed
in the gut of animals that performed long-term moderate
exercise compared to sedentary mice. Gene expression of IL-6,
IL-4, IL-10, and TGF-β cytokines (which are involved in IgA
regulation) and that of TNF-α and IL-12 was overexpressed in
the duodenum of exercised mice, whereas IL-2 gene expression
was downregulated (Viloria et al., 2011). The increased levels of
intestinal IgA caused by exercise may augment the resistance of
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exercised mice to intestinal pathogen infections, as well as the
resistance to colonization by commensal microbiota, ultimately
influencing the composition of the microbiota (Viloria et al.,
2011; Macpherson et al., 2015).

Myokines
During physical activity, myokines (cytokines and other
peptides) are released from muscle fibers, exerting a paracrine
and endocrine effect. Muscle cells are able to produce IL-6 by
themselves, increasing up to 100-fold the circulating levels of this
cytokine during exercise (Fischer, 2006). Circulating IL-6 seems
to have a dual effect: an effect related to metabolism, in which IL-
6 acts by increasing fat oxidation and glucose uptake via AMPK
phosphorylation (van Hall et al., 2003; Pedersen and Febbraio,
2012), but also an anti-inflammatory effect, as IL-6 produced
during exercise triggers the secretion of IL-10, IL-1ra, and
TNF-R anti-inflammatory cytokines, protecting against chronic
diseases associated with low-grade inflammation (Petersen and
Pedersen, 2005). It is well known that microbiota is altered
during inflammation-related diseases such as inflammatory
bowel diseases, cardiovascular diseases, and diabetes (Sekirov
et al., 2010); however, whether IL-6 or other myokines released
from the muscle could have an impact on microbiota is a totally
unexplored topic.

Weight Loss
Another factor by which exercise could cause changes in gut
microbiota composition is the weight loss that sometimes is
associated with exercise. Diversity and composition ofmicrobiota
from obese individuals differ from microbiota of non-obese
individuals (Turnbaugh et al., 2008; Xu et al., 2012; Teixeira et al.,
2013; Remely et al., 2015). However, the nature of these changes
and how they are produced is unknown; if weight loss involves
changes in gut microbiota or if a change in gut microbiota
composition contributes to weight loss is a question that requires
further research.

Gut Transit Time
Moderate exercise reduces intestinal transit time (Oettle, 1991),
which could influence the microbiota composition. In fact,
a decrease in Bacteroidetes phylum and Prevotella genus in
the microbiota of constipated obese children was observed
in comparison with the microbiota of obese children with
normal intestinal transit time (Zhu et al., 2014). The stool
consistency (a parameter related to intestinal transit time)
is strongly related to microbial diversity; stool firmness is
related to Methanobrevibacter, Oxalobacter, Butyricimonas, and
Akkermansia populations, whereas the Bacteroides genus is more
abundant in loose stool (Vandeputte et al., 2015). The presence of
certain genera of bacteria or others depending on the gut transit
time could be explained by the adaptation of determined bacterial
genera to growth in slow-transit time conditions, with reduced
ecosystem water activity, resistance to water stress conditions, or
higher fluctuations in nutrient availability, or, on the contrary,
by the adaptation to grow in fast-transit time conditions with
the ability to attach to colonic tissue or to have a high growth
rate (Vandeputte et al., 2015). Besides modifying the intestinal

transit, strenuous and prolonged exercise (i.e., long-distance
running and triathlons) provokes diarrhea and gastrointestinal
bleeding (Martin, 2011). These changes in gut permeability
produce a phenomenon of ischemia and reperfusion that can
affect gut microbiota. In murine models of ischemia reperfusion,
a dynamic change in gut microbiota occurs; microbiota diversity
decreases in early injury, whereas in reperfusion there is an
increase of Escherichia coli and Prevotella oralis and a decrease
of several species of the Lactobacillus genus (Wang et al., 2012,
2013). There are no human studies related to this issue, but it
would be interesting to conduct some, given the importance of
gut microbiota in health (Bermon et al., 2015).

Stress and Hypothalamic–Pituitary–Adrenal
Axis
The term microbial endocrinology was first coined by Lyte in
1993 as a “conceptual framework to understand interactions
between the microbiota and the host” (Lyte, 1993; Bailey,
2014). Commensal bacteria are able to segregate hormones
and neurotransmitters (epinephrine, acetylcholine, histamine,
serotonin, gamma aminobutyric acid) which can induce changes
at the brain level, and in turn, bacteria have receptors for
these hormones, thus they can communicate with the host
brain (Bailey, 2014). The activation of the HPA axis produces
changes in certain populations of bacteria (Pullinger et al.,
2010b), and bacteria can produce hormones that modify the
behavior of the host (Bravo et al., 2011). This communication
axis allows certain hormone-releasing stimuli, such as stress,
to modify the gut microbiota (Figure 2). Stress of physical or
psychological etiology causes HPA axis activation and the release
of various hormones (corticotropin, cortisol, noradrenaline,
adrenalin, dopamine) (Axelrod and Reisine, 1984), and gut
microbiota dysbiosis (Galley and Bailey, 2014). The release of
corticotropin releasing factor (CRF) causes changes in gastric
acid secretion, gastrointestinal motility, and mucus production
(Tache and Perdue, 2004; Bhatia and Tandon, 2005) that likely
influence gut microbiota. In animal models, the stress caused by
maternal separation or food deprivation increases serotonin and
noradrenaline levels, provoking a shift in microbiota profile with
a decrease of lactobacilli which increase the host susceptibility
to opportunistic infections (Bailey and Coe, 1999; O’Mahony
et al., 2009; Reynolds et al., 2010). Similar changes were found in
gut microbiota of undergraduate students in a stressful situation
like the examination period (Knowles et al., 2008). Moreover,
elevated plasmatic levels of norepinephrine due to stress have an
impact on gut microbiota by increasing the virulence of enteric
pathogens such as Salmonella enterica serovar typhimurium and
E. coli (Freestone et al., 2007; Pullinger et al., 2010a). In physical
exercise, physical stress and homeostasis disruption occurs when
the body exceeds 60% of the maximum volume of oxygen
(VO2max) or the duration of exercise exceeds 90min, even if
the intensity does not exceed 40% VO2max (Luger et al., 1987),
producing an activation of the HPA axis and hormone release
which is more significant as the exercise intensity increases
(Duclos et al., 1997). In addition to physical stress, athletes in
pre-competition periods suffer high psychological stress (Noblet
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and Gifford, 2002) that also triggers HPA axis activation. All
of the above indicates that the release of hormones that occurs
during exercise could modify the microbiota profile of subjects
who practice physical exercise at certain intensities or durations.
However, studies are needed to confirm this hypothesis, as there
are no studies in the literature addressing the effect of physical
and psychological stress linked to exercise in gut microbiota.

PERSPECTIVE

There is scientific evidence that exercise has a health-promoting
effect. However, if this beneficial effect may be associated in
part to gut microbiota modulation, it has been barely explored.
Preclinical studies indicate that physical exercise promotes
microbial diversity (which is associated with a healthier state) and
increases health-beneficial gut bacteria populations. Moreover,
the only study carried out on humans appears to confirm
murine model results. However, it is not clear which populations
are modified and how, as has been shown by contradictory
findings. Some of the reasons for these discrepancies could be
the various forms of exercise used in these studies (acute exercise,
chronic exercise, cardio and resistance training, voluntarily), the
different doses of exercise applied, and the exercise duration. The

observed changes in gut microbiota are triggered by underlying
mechanisms which are quite unknown nowadays and that we
have tried to compile. The importance of each of these factors
and to what extent they could modify the gut microbiota still
require further investigation. Given the close relation between
the microbiota and the immune system and its involvement in
several diseases, it is essential to know which factors modify gut
microbiota, and exercise seems to be one of them. Manipulation
of gut microbiota by modifying diet or exercise habits could be a
powerful tool in the future to prevent or treat several diseases.

AUTHOR CONTRIBUTIONS

BC, MP, ML have participated in the concept, design and critical
review of the manuscript. RS, JP, and JT have draft the work. All
named authors had given their approval for publication.

ACKNOWLEDGMENTS

The authors acknowledge the financial support of the
Universidad Europea de Madrid grants 2015UEM24 and
2015UEM46. ML is the holder of a “Ramón y Cajal” contract
RyC-2012-11910 fromMINECO (Spain).

REFERENCES

Amirian, E. S., Petrosino, J. F., Ajami, N. J., Liu, Y., Mims, M. P., and Scheurer, M.

E. (2013). Potential role of gastrointestinal microbiota composition in prostate

cancer risk. Infect. Agents Cancer 8:42. doi: 10.1186/1750-9378-8-42

Arrieta, M. C., and Finlay, B. (2014). The intestinal microbiota and allergic asthma.

J. Infect. 69(Suppl. 1), S53–S55. doi: 10.1016/j.jinf.2014.07.015

Asano, R. Y., Sales, M. M., Browne, R. A., Moraes, J. F., Coelho Junior, H. J.,

Moraes, M. R., et al. (2014). Acute effects of physical exercise in type 2 diabetes:

a review.World J. Diabetes 5, 659–665. doi: 10.4239/wjd.v5.i5.659

Axelrod, J., and Reisine, T. D. (1984). Stress hormones: their interaction and

regulation. Science 224, 452–459. doi: 10.1126/science.6143403

Backhed, F., Ding, H., Wang, T., Hooper, L. V., Koh, G. Y., Nagy, A., et al. (2004).

The gut microbiota as an environmental factor that regulates fat storage. Proc.

Natl. Acad. Sci. U.S.A. 101, 15718–15723. doi: 10.1073/pnas.0407076101

Backhed, F., Manchester, J. K., Semenkovich, C. F., and Gordon, J. I. (2007).

Mechanisms underlying the resistance to diet-induced obesity in germ-free

mice. Proc. Natl. Acad. Sci. U.S.A. 104, 979–984. doi: 10.1073/pnas.0605374104

Bailey, M. T. (2014). Influence of stressor-induced nervous system activation on

the intestinal microbiota and the importance for immunomodulation. Adv.

Exp. Med. Biol. 817, 255–276. doi: 10.1007/978-1-4939-0897-4_12

Bailey, M. T., and Coe, C. L. (1999). Maternal separation disrupts the

integrity of the intestinal microflora in infant rhesus monkeys. Developmental

psychobiology 35, 146-55. PubMed PMID: 10461128.

Bayego, E. S., Vila, G. S., and Martínez, I. S. (2012). Prescripción de ejercicio

físico: indicaciones, posología y efectos adversos. Med. Clín. 138, 18–24. doi:

10.1016/j.medcli.2010.12.008

Bermon, S., Petriz, B., Kajeniene, A., Prestes, J., Castell, L., and Franco, O. L. (2015).

The microbiota: an exercise immunology perspective. Exerc. Immunol. Rev. 21,

70–79.

Bhatia, V., and Tandon, R. K. (2005). Stress and the gastrointestinal tract.

J. Gastroenterol. Hepatol. 20, 332–339. doi: 10.1111/j.1440-1746.2004.03508.x

Bindels, L. B., and Delzenne, N. M. (2013). Muscle wasting: the gut microbiota

as a new therapeutic target? Int. J. Biochem. Cell Biol. 45, 2186–2190. doi:

10.1016/j.biocel.2013.06.021

Bishop-Bailey, D. (2013). Mechanisms governing the health and performance

benefits of exercise. Br. J. Pharmacol. 170, 1153–1166. doi: 10.1111/bph.12399

Bravo, J. A., Forsythe, P., Chew, M. V., Escaravage, E., Savignac, H. M., Dinan, T.

G., et al. (2011). Ingestion of Lactobacillus strain regulates emotional behavior

and central GABA receptor expression in a mouse via the vagus nerve. Proc.

Natl. Acad. Sci. U.S.A. 108, 16050–16055. doi: 10.1073/pnas.1102999108

Brown, E. M., Sadarangani, M., and Finlay, B. B. (2013). The role of the immune

system in governing host-microbe interactions in the intestine. Nat. Immunol.

14, 660–667. doi: 10.1038/ni.2611

Cannioto, R. A., and Moysich, K. B. (2015). Epithelial ovarian cancer and

recreational physical activity: a review of the epidemiological literature and

implications for exercise prescription. Gynecol. Oncol. 137, 559–573. doi:

10.1016/j.ygyno.2015.03.016

Choi, J. J., Eum, S. Y., Rampersaud, E., Daunert, S., Abreu, M. T., and

Toborek, M. (2013). Exercise attenuates PCB-induced changes in the mouse

gut microbiome. Environ. Health Perspect. 121, 725–730. doi: 10.1289/ehp.

1306534

Cipriani, S., Mencarelli, A., Palladino, G., and Fiorucci, S. (2010). FXR activation

reverses insulin resistance and lipid abnormalities and protects against

liver steatosis in Zucker (fa/fa) obese rats. J. Lipid Res. 51, 771–784. doi:

10.1194/jlr.M001602

Clarke, S. F., Murphy, E. F., O’Sullivan, O., Lucey, A. J., Humphreys, M., Hogan, A.,

et al. (2014). Exercise and associated dietary extremes impact on gut microbial

diversity. Gut 63, 1913–1920. doi: 10.1136/gutjnl-2013-306541

Claudel, T., Staels, B., and Kuipers, F. (2005). The Farnesoid X receptor: a

molecular link between bile acid and lipid and glucosemetabolism.Arterioscler.

Thromb. Vasc. Biol. 25, 2020–2030. doi: 10.1161/01.ATV.0000178994.21828.a7

Corpet, D. E., Yin, Y., Zhang, X. M., Remesy, C., Stamp, D., Medline,

A., et al. (1995). Colonic protein fermentation and promotion of colon

carcinogenesis by thermolyzed casein. Nutr. Cancer 23, 271–281. doi:

10.1080/01635589509514381

da Cunha, M. J., da Cunha, A. A., Ferreira, G. K., Baladao, M. E., Savio, L. E.,

Reichel, C. L., et al. (2013). The effect of exercise on the oxidative stress induced

by experimental lung injury. Life Sci. 92, 218–227. doi: 10.1016/j.lfs.2012.12.005

da Cunha, M. J., da Cunha, A. A., Scherer, E. B., Machado, F. R., Loureiro, S. O.,

Jaenisch, R. B., et al. (2014). Experimental lung injury promotes alterations in

energy metabolism and respiratory mechanics in the lungs of rats: prevention

by exercise. Mol. Cell. Biochem. 389, 229–238. doi: 10.1007/s11010-013-

1944-8

Frontiers in Physiology | www.frontiersin.org 8 February 2016 | Volume 7 | Article 51

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Cerdá et al. Factors Involved in Microbiota Modulation by Exercise

David, L. A., Maurice, C. F., Carmody, R. N., Gootenberg, D. B., Button, J. E.,

Wolfe, B. E., et al. (2014). Diet rapidly and reproducibly alters the human gut

microbiome. Nature 505, 559–563. doi: 10.1038/nature12820

De Filippo, C., Cavalieri, D., Di Paola, M., Ramazzotti, M., Poullet, J. B., Massart, S.,

et al. (2010). Impact of diet in shaping gut microbiota revealed by a comparative

study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. U.S.A.

107, 14691–14696. doi: 10.1073/pnas.1005963107

Delzenne, N. M., Neyrinck, A. M., Bäckhed, F., and Cani, P. D. (2011). Targeting

gut microbiota in obesity: effects of prebiotics and probiotics. Nat. Rev.

Endocrinol. 7, 639–646. doi: 10.1038/nrendo.2011.126

den Besten, G., van Eunen, K., Groen, A. K., Venema, K., Reijngoud, D. J., and

Bakker, B.M. (2013). The role of short-chain fatty acids in the interplay between

diet, gut microbiota, and host energy metabolism. J. Lipid Res. 54, 2325–2340.

doi: 10.1194/jlr.R036012

Dicksved, J., Halfvarson, J., Rosenquist, M., Järnerot, G., Tysk, C., Apajalahti, J.,

et al. (2008). Molecular analysis of the gut microbiota of identical twins with

Crohn’s disease. ISME J. 2, 716–727. doi: 10.1038/ismej.2008.37

Dominguez-Bello, M. G., Costello, E. K., Contreras, M., Magris, M., Hidalgo, G.,

Fierer, N., et al. (2010). Delivery mode shapes the acquisition and structure of

the initial microbiota across multiple body habitats in newborns. Proc. Natl.

Acad. Sci. U.S.A. 107, 11971–11975. doi: 10.1073/pnas.1002601107

Doyle, A., Zhang, G., Abdel Fattah, E. A., Eissa, N. T., and Li, Y. P. (2011).

Toll-like receptor 4 mediates lipopolysaccharide-induced muscle catabolism

via coordinate activation of ubiquitin-proteasome and autophagy-lysosome

pathways. FASEB J. 25, 99–110. doi: 10.1096/fj.10-164152

Duclos, M., Corcuff, J. B., Rashedi, M., Fougere, V., andManier, G. (1997). Trained

versus untrained men: different immediate post-exercise responses of pituitary

adrenal axis. A preliminary study. Eur. J. Appl. Physiol. Occup. Physiol. 75,

343–350. doi: 10.1007/s004210050170

Eberl, G. (2010). A new vision of immunity: homeostasis of the superorganism.

Mucosal Immunol. 3, 450–460. doi: 10.1038/mi.2010.20

Evans, C. C., LePard, K. J., Kwak, J.W., Stancukas, M. C., Laskowski, S., Dougherty,

J., et al. (2014). Exercise prevents weight gain and alters the gut microbiota

in a mouse model of high fat diet-induced obesity. PLoS ONE 9:e92193. doi:

10.1371/journal.pone.0092193

Fischer, C. P. (2006). Interleukin-6 in acute exercise and training: what is the

biological relevance. Exerc. Immunol. Rev. 12:41.

Flint, H. J., Duncan, S. H., Scott, K. P., and Louis, P. (2015). Links between diet,

gut microbiota composition and gut metabolism. Proc. Nutr. Soc. 74, 13–22.

doi: 10.1017/S0029665114001463

Freestone, P. P., Haigh, R. D., and Lyte, M. (2007). Blockade of catecholamine-

induced growth by adrenergic and dopaminergic receptor antagonists in

Escherichia coli O157:H7, Salmonella enterica and Yersinia enterocolitica. BMC

Microbiol. 7:8. doi: 10.1186/1471-2180-7-8

Galley, J. D., and Bailey, M. T. (2014). Impact of stressor exposure on the

interplay between commensal microbiota and host inflammation.GutMicrobes

5, 390–396. doi: 10.4161/gmic.28683

Gill, S. R., Pop, M., Deboy, R. T., Eckburg, P. B., Turnbaugh, P. J., Samuel, B. S.,

et al. (2006).Metagenomic analysis of the human distal gutmicrobiome. Science

312, 1355–1359. doi: 10.1126/science.1124234

Giongo, A., Gano, K. A., Crabb, D. B., Mukherjee, N., Novelo, L. L., Casella, G.,

et al. (2011). Toward defining the autoimmune microbiome for type 1 diabetes.

ISME J. 5, 82–91. doi: 10.1038/ismej.2010.92

Gonzalez-Freire, M., de Cabo, R., Studenski, S. A., and Ferrucci, L. (2014). The

neuromuscular junction: aging at the crossroad between nerves and muscle.

Front. Aging Neurosci. 6:208. doi: 10.3389/fnagi.2014.00208

Guinane, C. M., and Cotter, P. D. (2013). Role of the gut microbiota in health

and chronic gastrointestinal disease: understanding a hidden metabolic organ.

Therap. Adv. Gastroenterol. 6, 295–308. doi: 10.1177/1756283X13482996

Hagio, M., Matsumoto, M., Yajima, T., Hara, H., and Ishizuka, S. (1985). Voluntary

wheel running exercise and dietary lactose concomitantly reduce proportion

of secondary bile acids in rat feces. J. Appl. Physiol. 109, 663–668. doi:

10.1152/japplphysiol.00777.2009

Hsu, Y. J., Chiu, C. C., Li, Y. P., Huang, W. C., Huang, Y. T., Huang, C. C.,

et al. (2015). Effect of intestinal microbiota on exercise performance in mice.

J. Strength Cond. Res. 29, 552–558. doi: 10.1519/JSC.0000000000000644

Inoue, Y., and Shimojo, N. (2015). Microbiome/microbiota and allergies. Semin.

Immunopathol. 37, 57–64. doi: 10.1007/s00281-014-0453-5

Islam, K. B., Fukiya, S., Hagio, M., Fujii, N., Ishizuka, S., Ooka, T., et al. (2011). Bile

acid is a host factor that regulates the composition of the cecal microbiota in

rats. Gastroenterology 141, 1773–1781. doi: 10.1053/j.gastro.2011.07.046

Kang, S. S., Jeraldo, P. R., Kurti, A., Miller, M. E., Cook, M. D., Whitlock, K.,

et al. (2014). Diet and exercise orthogonally alter the gut microbiome and reveal

independent associations with anxiety and cognition.Mol. Neurodegener. 9:36.

doi: 10.1186/1750-1326-9-36

Kasubuchi, M., Hasegawa, S., Hiramatsu, T., Ichimura, A., and Kimura, I. (2015).

Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic

regulation. Nutrients 7, 2839–2849. doi: 10.3390/nu7042839

Knowles, S. R., Nelson, E. A., and Palombo, E. A. (2008). Investigating the role

of perceived stress on bacterial flora activity and salivary cortisol secretion:

a possible mechanism underlying susceptibility to illness. Biol. Psychol. 77,

132–137. doi: 10.1016/j.biopsycho.2007.09.010

Koenig, J. E., Spor, A., Scalfone, N., Fricker, A. D., Stombaugh, J., Knight, R.,

et al. (2011). Succession of microbial consortia in the developing infant gut

microbiome. Proc. Natl. Acad. Sci. U.S.A. 108(Suppl. 1), 4578–4585. doi:

10.1073/pnas.1000081107

Koren, O., Goodrich, J. K., Cullender, T. C., Spor, A., Laitinen, K., Bäckhed, H. K.,

et al. (2012). Host remodeling of the gut microbiome and metabolic changes

during pregnancy. Cell 150, 470–480. doi: 10.1016/j.cell.2012.07.008

Kumar, R. S., Kanmani, P., Yuvaraj, N., Paari, K. A., Pattukumar, V.,

Thirunavukkarasu, C., et al. (2012). Lactobacillus plantarum AS1 isolated

from south Indian fermented food Kallappam suppress 1,2-dimethyl hydrazine

(DMH)-induced colorectal cancer in male Wistar rats. Appl. Biochem.

Biotechnol. 166, 620–631. doi: 10.1007/s12010-011-9453-2

Lambert, J. E., Myslicki, J. P., Bomhof, M. R., Belke, D. D., Shearer, J., and Reimer,

R. A. (2015). Exercise training modifies gut microbiota in normal and diabetic

mice. Appl. Physiol. Nutr. Metab. 40, 749–752. doi: 10.1139/apnm-2014-0452

Legrand, P., Beauchamp, E., Catheline, D., Pédrono, F., and Rioux, V. (2010). Short

chain saturated fatty acids decrease circulating cholesterol and increase tissue

PUFA content in the rat. Lipids 45, 975–986. doi: 10.1007/s11745-010-3481-5

Lei, Y. M., Nair, L., and Alegre, M. L. (2015). The interplay between the intestinal

microbiota and the immune system. Clin. Res. Hepatol. Gastroenterol. 39, 9–19.

doi: 10.1016/j.clinre.2014.10.008

Leonel, A. J., and Alvarez-Leite, J. I. (2012). Butyrate: implications for

intestinal function. Curr. Opin. Clin. Nutr. Metab. Care 15, 474–479. doi:

10.1097/MCO.0b013e32835665fa

Ley, R. E., Backhed, F., Turnbaugh, P., Lozupone, C. A., Knight, R. D., and Gordon,

J. I. (2005). Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. U.S.A.

102, 11070–11075. doi: 10.1073/pnas.0504978102

Ley, R. E., Peterson, D. A., and Gordon, J. I. (2006a). Ecological and evolutionary

forces shaping microbial diversity in the human intestine. Cell 124, 837–848.

doi: 10.1016/j.cell.2006.02.017

Ley, R. E., Turnbaugh, P. J., Klein, S., and Gordon, J. I. (2006b). Microbial ecology:

human gut microbes associated with obesity. Nature 444, 1022–1023. doi:

10.1038/4441022a

Lozupone, C. A., Stombaugh, J., Gonzalez, A., Ackermann, G., Wendel,

D., Vazquez-Baeza, Y., et al. (2013). Meta-analyses of studies of the

human microbiota. Genome Res. 23, 1704–1714. doi: 10.1101/gr.151

803.112

Luger, A., Deuster, P. A., Kyle, S. B., Gallucci, W. T., Montgomery, L. C., Gold, P.

W., et al. (1987). Acute hypothalamic-pituitary-adrenal responses to the stress

of treadmill exercise. Physiologic adaptations to physical training. N. Engl. J.

Med. 316, 1309–1315. doi: 10.1056/NEJM198705213162105

Lyte, M. (1993). The role of microbial endocrinology in infectious disease.

J. Endocrinol. 137, 343–345. doi: 10.1677/joe.0.1370343

Macpherson, A. J., Koller, Y., and McCoy, K. D. (2015). The bilateral

responsiveness between intestinal microbes and IgA. Trends Immunol. 36,

460–470. doi: 10.1016/j.it.2015.06.006

Martin, D. (2011). Physical activity benefits and risks on the gastrointestinal

system. South. Med. J. 104, 831–837. doi: 10.1097/SMJ.0b013e318236c263

Martin, S. A., Dantzer, R., Kelley, K. W., andWoods, J. A. (2014). Voluntary wheel

running does not affect lipopolysaccharide-induced depressive-like behavior

in young adult and aged mice. Neuroimmunomodulation 21, 52–63. doi:

10.1159/000356144

Matsumoto, M., Inoue, R., Tsukahara, T., Ushida, K., Chiji, H., Matsubara,

N., et al. (2008). Voluntary running exercise alters microbiota composition

Frontiers in Physiology | www.frontiersin.org 9 February 2016 | Volume 7 | Article 51

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Cerdá et al. Factors Involved in Microbiota Modulation by Exercise

and increases n-butyrate concentration in the rat cecum. Biosci. Biotechnol.

Biochem. 72, 572–576. doi: 10.1271/bbb.70474

McFarlin, B. K., Flynn, M. G., Campbell, W. W., Stewart, L. K., and Timmerman,

K. L. (2004). TLR4 is lower in resistance-trained older women and related

to inflammatory cytokines. Med. Sci. Sports Exerc. 36, 1876–1883. doi:

10.1249/01.MSS.0000145465.71269.10

Nicholson, J. K., Holmes, E., Kinross, J., Burcelin, R., Gibson, G., Jia, W., et al.

(2012). Host-gut microbiota metabolic interactions. Science 336, 1262–1267.

doi: 10.1126/science.1223813

Noblet, A. J., and Gifford, S. M. (2002). The sources of stress experienced

by professional Australian Footballers. J. Appl. Physiol. 14, 1–13. doi:

10.1080/10413200209339007

O’Toole, P. W. (2012). Changes in the intestinal microbiota from adulthood

through to old age. Clin. Microbiol. Infect. 18, 44–46. doi: 10.1111/j.1469-

0691.2012.03867.x

Oettle, G. J. (1991). Effect of moderate exercise on bowel habit. Gut 32, 941–944.

doi: 10.1136/gut.32.8.941

O’Hara, A. M., and Shanahan, F. (2006). The gut flora as a forgotten organ. EMBO

Rep. 7, 688–693. doi: 10.1038/sj.embor.7400731

Oliveira, A. G., Carvalho, B. M., Tobar, N., Ropelle, E. R., Pauli, J. R., Bagarolli,

R. A., et al. (2011). Physical exercise reduces circulating lipopolysaccharide and

TLR4 activation and improves insulin signaling in tissues of DIO rats. Diabetes

60, 784–796. doi: 10.2337/db09-1907

O’Mahony, S. M., Marchesi, J. R., Scully, P., Codling, C., Ceolho, A. M., Quigley,

E. M., et al. (2009). Early life stress alters behavior, immunity, and microbiota

in rats: implications for irritable bowel syndrome and psychiatric illnesses. Biol.

Psychiatry 65, 263–267. doi: 10.1016/j.biopsych.2008.06.026

O’Sullivan, O., Cronin, O., Clarke, S. F., Murphy, E. F., Molloy, M. G., Shanahan,

F., et al. (2015). Exercise and the microbiota. Gut Microbes 6, 131–136. doi:

10.1080/19490976.2015.1011875

Ou, J., DeLany, J. P., Zhang, M., Sharma, S., and O’Keefe, S. J. D. (2012).

Association between low colonic short-chain fatty acids and high bile

acids in high colon cancer risk populations. Nutr. Cancer 64, 34–40. doi:

10.1080/01635581.2012.630164

Owen, N., Sparling, P. B., Healy, G. N., Dunstan, D. W., and Matthews, C. E.

(2010). Sedentary behavior: emerging evidence for a new health risk.Mayo Clin.

Proc. 85, 1138–1141. doi: 10.4065/mcp.2010.0444

Parracho, H.M. R. T., Bingham,M. O., Gibson, G. R., andMcCartney, A. L. (2005).

Differences between the gut microflora of children with autistic spectrum

disorders and that of healthy children. J. Med. Microbiol. 54, 987–991. doi:

10.1099/jmm.0.46101-0

Pedersen, B. K., and Febbraio, M. A. (2012). Muscles, exercise and obesity:

skeletal muscle as a secretory organ. Nat. Rev. Endocrinol. 8, 457–465. doi:

10.1038/nrendo.2012.49

Petersen, A. M., and Pedersen, B. K. (2005). The anti-inflammatory effect of

exercise. J. Appl. Physiol. 98, 1154–1162. doi: 10.1152/japplphysiol.00164.2004

Petriz, B. A., Castro, A. P., Almeida, J. A., Gomes, C. P., Fernandes, G. R., Kruger,

R. H., et al. (2014). Exercise induction of gut microbiota modifications in obese,

non-obese and hypertensive rats. BMC Genomics 15:511. doi: 10.1186/1471-

2164-15-511

Pullinger, G. D., Carnell, S. C., Sharaff, F. F., van Diemen, P. M., Dziva, F.,

Morgan, E., et al. (2010a). Norepinephrine augments Salmonella enterica-

induced enteritis in a manner associated with increased net replication but

independent of the putative adrenergic sensor kinases QseC and QseE. Infect.

Immun. 78, 372–380. doi: 10.1128/IAI.01203-09

Pullinger, G. D., vanDiemen, P.M., Carnell, S. C., Davies, H., Lyte,M., and Stevens,

M. P. (2010b). 6-hydroxydopamine-mediated release of norepinephrine

increases faecal excretion of Salmonella enterica serovar typhimurium in pigs.

Vet. Res. 41, 68. doi: 10.1051/vetres/2010040

Qin, J., Li, Y., Cai, Z., Li, S., Zhu, J., Zhang, F., et al. (2012). A metagenome-wide

association study of gut microbiota in type 2 diabetes. Nature 490, 55–60. doi:

10.1038/nature11450

Queipo-Ortuño, M. I., Seoane, L. M., Murri, M., Pardo, M., Gomez-Zumaquero,

J. M., Cardona, F., et al. (2013). Gut microbiota composition in male

rat models under different nutritional status and physical activity and its

association with serum leptin and ghrelin levels. PLoS ONE 8:e65465. doi:

10.1371/journal.pone.0065465

Quigley, E. M. M. (2013). Gut bacteria in health and disease. Gastroenterol.

Hepatol. 9, 560.

Reis Goncalves, C. T., Reis Goncalves, C. G., de Almeida, F. M., Lopes, F. D., dos

Santos Durao, A. C., dos Santos, F. A., et al. (2012). Protective effects of aerobic

exercise on acute lung injury induced by LPS in mice. Crit. Care 16, R199. doi:

10.1186/cc11807

Remely, M., Tesar, I., Hippe, B., Gnauer, S., Rust, P., and Haslberger, A. G. (2015).

Gut microbiota composition correlates with changes in body fat content due to

weight loss. Benef. Microbes 6, 431–439. doi: 10.3920/bm2014.0104

Reynolds, R.M., Labad, J., Strachan,M.W., Braun, A., Fowkes, F. G., Lee, A. J., et al.

(2010). Elevated fasting plasma cortisol is associated with ischemic heart disease

and its risk factors in people with type 2 diabetes: the Edinburgh type 2 diabetes

study. J. Clin. Endocrinol. Metab. 95, 1602–1608. doi: 10.1210/jc.2009-2112

Ringel-Kulka, T., Palsson, O. S., Maier, D., Carroll, I., Galanko, J. A., Leyer, G., et al.

(2011). Probiotic bacteria Lactobacillus acidophilusNCFMand Bifidobacterium

lactis Bi-07 versus placebo for the symptoms of bloating in patients with

functional bowel disorders: a double-blind study. J. Clin. Gastroenterol. 45,

518–525. doi: 10.1097/MCG.0b013e31820ca4d6

Robles Alonso, V., and Guarner, F. (2013). Linking the gut microbiota to human

health. Br. J. Nutr. 109, S21–S6. doi: 10.1017/S0007114512005235

Round, J. L., and Mazmanian, S. K. (2009). The gut microbiota shapes intestinal

immune responses during health and disease. Nat. Rev. Immunol. 9, 313–323.

doi: 10.1038/nri2515

Salminen, S., Gibson, G. R., McCartney, A. L., and Isolauri, E. (2004). Influence

of mode of delivery on gut microbiota composition in seven year old children.

Gut 53, 1388–1389. doi: 10.1136/gut.2004.041640

Sanchez, A.M., Candau, R. B., and Bernardi, H. (2014). FoxO transcription factors:

their roles in themaintenance of skeletal muscle homeostasis.Cell. Mol. Life Sci.

71, 1657–1671. doi: 10.1007/s00018-013-1513-z

Schuler, G., Adams, V., and Goto, Y. (2013). Role of exercise in the prevention of

cardiovascular disease: results, mechanisms, and new perspectives. Eur. Heart

J. 34, 1790–1799. doi: 10.1093/eurheartj/eht111

Sekirov, I., Russell, S. L., Antunes, L. C., and Finlay, B. B. (2010). Gut microbiota in

health and disease. Physiol. Rev. 90, 859–904. doi: 10.1152/physrev.00045.2009

Silverman, M. N., and Deuster, P. A. (2014). Biological mechanisms underlying the

role of physical fitness in health and resilience. Interface Focus 4:20140040. doi:

10.1098/rsfs.2014.0040

Sobhani, I., Tap, J., Roudot-Thoraval, F., Roperch, J. P., Letulle, S., Langella, P.,

et al. (2011). Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS ONE

6:e16393. doi: 10.1371/journal.pone.0016393

Song, Y., Liu, C., and Finegold, S. M. (2004). Real-time PCR quantitation of

clostridia in feces of autistic children. Appl. Environ. Microbiol. 70, 6459–6465.

doi: 10.1128/AEM.70.11.6459-6465.2004

Spor, A., Koren, O., and Ley, R. (2011). Unravelling the effects of the environment

and host genotype on the gut microbiome. Nat. Rev. Microbiol. 9, 279–290. doi:

10.1038/nrmicro2540

Stewart, L. K., Flynn, M. G., Campbell, W. W., Craig, B. A., Robinson, J. P.,

McFarlin, B. K., et al. (2005). Influence of exercise training and age on CD14

cell-surface expression of toll-like receptor 2 and 4. Brain Behav. Immun. 19,

389–397. doi: 10.1016/j.bbi.2005.04.003

Sutherland,W. H., Nye, E. R., Macfarlane, D. J., Robertson, M. C., andWilliamson,

S. A. (1991). Fecal bile acid concentration in distance runners. Int. J. SportsMed.

12, 533–536. doi: 10.1055/s-2007-1024729

Tache, Y., and Perdue, M. H. (2004). Role of peripheral CRF signalling

pathways in stress-related alterations of gut motility and mucosal

function. Neurogastroenterol. Motil. 16(Suppl. 1), 137–142. doi:

10.1111/j.1743-3150.2004.00490.x

Tamboli, C. P., Neut, C., Desreumaux, P., and Colombel, J. F. (2004). Dysbiosis in

inflammatory bowel disease. Gut 53, 1–4. doi: 10.1136/gut.53.1.1

Teixeira, T. F. S., Grzeœkowiak, £. M., Salminen, S., Laitinen, K., Bressan,

J., and Peluzio Mdo, C. (2013). Faecal levels of Bifidobacterium and

Clostridium coccoides but not plasma lipopolysaccharide are inversely related

to insulin and HOMA index in women. Clin. Nutr. 32, 1017–1022. doi:

10.1016/j.clnu.2013.02.008

Thompson-Chagoyán, O. C., Maldonado, J., and Gil, A. (2007). Colonization and

impact of disease and other factors on intestinal microbiota. Dig. Dis. Sci. 52,

2069–2077. doi: 10.1007/s10620-006-9285-z

Frontiers in Physiology | www.frontiersin.org 10 February 2016 | Volume 7 | Article 51

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Cerdá et al. Factors Involved in Microbiota Modulation by Exercise

Toden, S., Bird, A. R., Topping, D. L., and Conlon, M. A. (2005). Resistant starch

attenuates colonic DNA damage induced by higher dietary protein in rats.Nutr.

Cancer 51, 45–51. doi: 10.1207/s15327914nc5101_7

Turnbaugh, P. J., Bäckhed, F., Fulton, L., and Gordon, J. I. (2008). Diet-induced

obesity is linked to marked but reversible alterations in the mouse distal gut

microbiome. Cell Host Microbe 3, 213–223. doi: 10.1016/j.chom.2008.02.015

Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R., and

Gordon, J. I. (2006). An obesity-associated gut microbiome with increased

capacity for energy harvest. Nature 444, 1027–1031. doi: 10.1038/nature05414

Vaahtovuo, J., Munukka, E., Korkeamaki, M., Luukkainen, R., and Toivanen,

P. (2008). Fecal microbiota in early rheumatoid arthritis. J. Rheumatol. 35,

1500–1505.

van Hall, G., Steensberg, A., Sacchetti, M., Fischer, C., Keller, C., Schjerling, P., et al.

(2003). Interleukin-6 stimulates lipolysis and fat oxidation in humans. J. Clin.

Endocrinol. Metab. 88, 3005–3010. doi: 10.1210/jc.2002-021687

Vandeputte, D., Falony, G., Vieira-Silva, S., Tito, R. Y., Joossens, M., and Raes, J.

(2015). Stool consistency is strongly associated with gut microbiota richness

and composition, enterotypes and bacterial growth rates. Gut 65, 57–62. doi:

10.1136/gutjnl-2015-309618

Villena, J., and Kitazawa, H. (2014). Modulation of intestinal TLR4-

inflammatory signaling pathways by probiotic microorganisms: lessons

learned from Lactobacillus jensenii TL2937. Front. Immunol. 4:512. doi:

10.3389/fimmu.2013.00512

Viloria, M., Lara-Padilla, E., Campos-Rodríguez, R., Jarillo-Luna, A., Reyna-

Garfias, H., López-Sánchez, P., et al. (2011). Effect of moderate exercise on IgA

levels and lymphocyte count in mouse intestine. Immunol. Invest. 40, 640–656.

doi: 10.3109/08820139.2011.575425

Wang, F., Li, Q., Wang, C., Tang, C., and Li, J. (2012). Dynamic alteration of

the colonic microbiota in intestinal ischemia-reperfusion injury. PLoS ONE

7:e42027. doi: 10.1371/journal.pone.0042027

Wang, H., Chen, J., Hollister, K., Sowers, L. C., and Forman, B. M. (1999).

Endogenous bile acids are ligands for the nuclear receptor FXR/BAR.Mol. Cell

3, 543–553. doi: 10.1016/S1097-2765(00)80348-2

Wang, H., Zhang, W., Zuo, L., Zhu, W., Wang, B., Li, Q., et al. (2013).

Bifidobacteria may be beneficial to intestinal microbiota and reduction of

bacterial translocation in mice following ischaemia and reperfusion injury. Br.

J. Nutr. 109, 1990–1998. doi: 10.1017/S0007114512004308

Watanabe, M., Houten, S. M., Mataki, C., Christoffolete, M. A., Kim, B.

W., Sato, H., et al. (2006). Bile acids induce energy expenditure by

promoting intracellular thyroid hormone activation. Nature 439, 484–489. doi:

10.1038/nature04330

Wekesa, A., Harrison, M., and Watson, R. W. (2015). Physical activity and

its mechanistic effects on prostate cancer. Prostate Cancer Prostatic Dis. 18,

197–207. doi: 10.1038/pcan.2015.9

Wertheim, B. C.,Martinez,M. E., Ashbeck, E. L., Roe, D. J., Jacobs, E. T., Alberts, D.

S., et al. (2009). Physical activity as a determinant of fecal bile acid levels.Cancer

Epidemiol. Biomarkers Prev. 18, 1591–1598. doi: 10.1158/1055-9965.EPI-08-

1187

Xu, P., Li, M., Zhang, J., and Zhang, T. (2012). Correlation of intestinal microbiota

with overweight and obesity in Kazakh school children. BMCMicrobiol. 12:283.

doi: 10.1186/1471-2180-12-283

Yamashita, H., Fujisawa, K., Ito, E., Idei, S., Kawaguchi, N., Kimoto, M., et al.

(2007). Improvement of obesity and glucose tolerance by acetate in Type 2

diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Biosci. Biotechnol.

Biochem. 71, 1236–1243. doi: 10.1271/bbb.60668

Yamashita, H., Maruta, H., Jozuka, M., Kimura, R., Iwabuchi, H., Yamato, M., et al.

(2009). Effects of acetate on lipid metabolism in muscles and adipose tissues

of type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Biosci.

Biotechnol. Biochem. 73, 570–576. doi: 10.1271/bbb.80634

Yatsunenko, T., Rey, F. E., Manary, M. J., Trehan, I., Dominguez-Bello,

M. G., Contreras, M., et al. (2012). Human gut microbiome viewed

across age and geography. Nature 486, 222–227. doi: 10.1038/nature

11053

Zhu, L., Liu, W., Alkhouri, R., Baker, R. D., Bard, J. E., Quigley, E. M.,

et al. (2014). Structural changes in the gut microbiome of constipated

patients. Physiol. Genomics 46, 679–686. doi: 10.1152/physiolgenomics.0008

2.2014

Zhu, Y., Luo, T. M., Jobin, C., and Young, H. A. (2011). Gut microbiota

and probiotics in colon tumorigenesis. Cancer Lett. 309, 119–127. doi:

10.1016/j.canlet.2011.06.004

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Cerdá, Pérez, Pérez-Santiago, Tornero-Aguilera, González-Soltero

and Larrosa. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) or licensor are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Physiology | www.frontiersin.org 11 February 2016 | Volume 7 | Article 51

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive

	Gut Microbiota Modification: Another Piece in the Puzzle of the Benefits of Physical Exercise in Health?
	Introduction
	Gut microbiota
	Gut microbiota and health
	Aspects Influencing Gut Microbiota

	Physical exercise and gut microbiota
	Potential mechanism by which exercise influences gut microbiota
	Bile Acids
	Short-Chain Fatty Acids
	Toll-Like Receptors—Lipopolysaccharide
	Ig-A-Mediated Mucosal Immunity
	Myokines
	Weight Loss
	Gut Transit Time
	Stress and Hypothalamic–Pituitary–Adrenal Axis

	Perspective
	Author contributions
	Acknowledgments
	References


